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I. ABSTRACT

Reinforcement learning agents have been found to be suc-
cessful in various tasks and have even been transferred to
and used in real-world domains. However, there is still a long
way to go before they come close to humans when it comes
to multi-tasking and transfer learning over similar and vastly
different tasks. The idea for our project emerged from the
belief that memory storage in cells is one advantage humans
possess over machines that results in a significant difference in
performance level, especially in data efficiency and long term
dependencies between rewards and actions in a Reinforcement
learning setup. In this project, we have done an extensive
survey on existing methods for multi-tasking and incorporating
memory in RL agents, and have developed and deployed a
model that has memory and can learn to do multiple tasks.
We have demonstrated the performance of our model on
single as well as multiple(multi-tasking setup) Atari games,
but in theory, the model can be extended to any reinforcement
learning problem.

II. INTRODUCTION

Humans have the ability to store patterns in their brain,
retrieve them when required as well as the power to make
predictions about the future based on what they had perceived
in their past as well as the present and make better decisions.
A lot of research work has been done in the area of improving
the performance of reinforcement learning agents by trying
to model the environment, execute rollouts towards the future
and several other techniques have been employed in the past.

Humans possess the ability to learn multiple tasks and
remember them over long periods of time and also utilize
this past knowledge when they come across a new task which
enables them to learn faster. Multi-task learning is a famous
problem in the domain of reinforcement learning on which
people have been working for years. It is a difficult task to
work with because the network should ideally learn to perform
each of the tasks to the level achieved while learning on those
tasks using individual learners, and at the same time, ensure
that learning on one task doesn’t result in significant amount
of catastrophic forgetting on the other task. Catastrophic
forgetting is a common phenomenon which has to be dealt
with while learning to multi-task using a single network.
Another phenomenon to be concerned about is whether
positive and negative transfers are occurring while learning
to perform multiple tasks. A positive transfer is desirable
especially if the tasks are similar and since the network
capacity is limited. A positive transfer enables the network to
share it’s parameters or share the information learned between
tasks. Whereas a negative transfer is undesirable because if

the network is unable to differentiate between tasks and the
skills learned are ones that are beneficial to some of the tasks,
then the skills that proved to improve the performance on one
task might be detrimental while performing another task. Our
end goal is to achieve optimal performance on all the tasks.

Here, we propose a model which is based on one of
the many hypotheses of how the human brain works : a
query-retrieval system. Our model is inspired from [14] where
they maintain a short term as well as a long-term memory
in a DQN architecture to improve performance in partially
observable environments. Our proposed Multi-tasking model
is built over a basic A3C-LSTM network. Since our ultimate
aim is to learn multiple tasks using the model, we opted for an
on-policy learning algorithm such as A3C over an off-policy
update algorithm such as DQN which requires a replay
memory, which in our case we would have to maintain replay
memories corresponding to each task. Our architecture has
multiple long-term memory modules and a single short term
memory module, but in our experiments, we’ll be making
use of only three long term memory modules. The purpose
of the long term memories is to acquire and store segments
of information about various tasks and situations encountered
over long periods of time. Now, when a task/situation is faced,
information from all these modules queried the short term
memory module to selectively aggregate the task relevant
information and then a decision/action is taken by updating
the state-action values using information from both the short
term as well as long term memory modules.

We believe this architecture could aid in transfer between
the tasks and also reduce catastrophic forgetting and negative
transfer while learning to do multiple tasks. In an ideal
scenario, each long-term module would presumably learn to
represent distinct but shared features of the tasks and aid in
performing well on each of the task.

III. PRELIMINARIES

In this section, we briefly describe the algorithms and archi-
tectures we’ve mainly used or have taken inspiration from.

A. Asynchronous Advantage Actor-Critic (A3C)

A3C [12] is an algorithm for asynchronous gradient descent
optimization in deep reinforcement learning frameworks where
parallel actor-critic threads are initialized and executed, asyn-
chronously updating the main network to give a stable and on-
policy learning technique without the requirement of a replay
memory as used for off-policy updates as observed in DQN
[13] based frameworks. An estimate of the policy π(at|st; θ)
and the value function V (st; θv) which are updated when
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an episode terminates or if tmax number of environmental
steps are reached, upon which the thread is reinitialized. The
algorithm executes multiple threads of the actor and critic
networks asynchronously and gathers parameter updates in
parallel.

B. Adaptive Active Sampling Method : A5C

The algorithm was introduced in [20] where the sequence
of incoming tasks for training the multi-tasking network was
controlled by using Adaptive Active Sampling technique. At
the end of every episode, the next task to train the network on
is sampled from the probability distribution

pi =
e
mi
τ∑k

c=1 e
mc
τ

where k denotes the number of tasks and pi denotes the
probability of sampling task i, mi = tai−ai

tai
is called the

evidence which is an estimate of how well the network can
solve task i, tai is the target score for task i and ai is the
average score over the past n scores for task i.

C. MQN, RMQN and FRMQN

The paper Control of Memory, Active Perception, and Action
in Minecraft [14] introduces and describes three memory-
incorporated DQN architectures. There are two levels of mem-
ory : a short-term memory which is a vectorial representation
of the recent history of observations and a long term memory
which is a vectorial representation of the entire history of
the agent’s learning. A context vector representing the task
is obtained from retrieving information from the two levels
of memory and is used for state-action value estimation; the
current time step’s context vector becomes the long term
memory representation for the next time step. Depending on
how the context vector is constructed the three architectures
are obtained : Memory Q-Network(MQN), Recurrent Mem-
ory Q-Network(RMQN) and Feedback Recurrent Memory Q-
Network(FRMQN).
• MQN : The context vector is constructed as a projected

representation of the short term memory.
• RMQN : Here the long term memory is used to query and

retrieve relevant material from the short term memory.
The short and long term memory are together used to
update the long term memory which is used as the context
vector.

• FRMQN : Here again, the long term memory is used
to to query and retrieve relevant material from the short
term memory. But there is a feedback loop wherein
the retrieved short term memory is used along with the
current state and long term memory to update the context
vector.

IV. MEMORY INCORPORATED ARCHITECTURES FOR
SINGLE-TASK AGENTS

The following three architectures which incorporate memory
into an A3C agent were adapted from [14]. They consist of
a short term memory and a long term memory : vectorial

representations of the recent history and entire history of
observations. The two memories query and refresh themselves
before they are used to calculate the state-action values which
the agent uses to move in the environment.

A. Memory-A3C Network

Fig. 1: Diagrammatic description of the architecture of Memory-
A3C (M-A3C) network comprising of a short term memory and a
feed forward neural network which are used to compute the q values

This model (Figure 1) has been adapted from MQN architec-
ture [14], which comprises of an A3C-Feed Forward network
augmented with only a short term memory. This projected
short term memory vector along with the feed forward repre-
sentation of the current state(the context vector in this case)
are used to calculate the actor and the critic. The equations
can be found in the appendix.

B. Recurrent-Memory-A3C Network

Fig. 2: Diagrammatic description of the architecture of Recurrrent
Memory-A3C (RM-A3C) comprising of a short term memory and
an LSTM as the long term memory/context vector which are used to
update the context vector and to compute the state-action values

This model(Figure 2) has been adapted from the RMQN
architecture [14], which comprises of a short term as well as
a long term memory module incorporated into an A3C-LSTM
network. Here, there is a connection from the long term to the
short term memory and so, the context vector is used to view
and understand the current short term observations in a better
light. The projected short term memory vector and the context
vector(calculated from the short and long term memories) are
used to calculate the actor and the critic. The equations can
be found in the appendix.
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C. Feedback-Recurrent-Memory-A3C Network

Fig. 3: Diagrammatic description of the architecture of Feedback
Recurrrent Memory-A3C (FRM-A3C) comprising of a short term
memory and an LSTM as the long term memory/context vector which
are used to update the context vector and to compute the state-action
values and a feedback connection from the short-term memory to
long term memory while updating the long-term memory

This model(Figure 3) has been adapted from the FRMQN
architecture [14], which comprises of a short term as well
and a long term memory module incorporated into an A3C-
LSTM network as well as a feedback from the long term to the
short term memory. The projected short term memory vector
along with the context vector(calculated from the long term
memory, short term memory as well as the projected short
term memory vector) are used to calculate the actor and the
critic. The equations can be found in the appendix.

V. ARCHITECTURE OF MRM-A3C

Modularised Recurrrent Memory-A3C (Refer Figure 4) is our
proposed model which multi-tasks by using memory. The
architecture comprises of two layers of attention :
• Lower-level : n attention mechanisms, one corresponding

to each long-term memory. This attention layer is used to
extract information from the long-term memory modules
using the common short-term memory. The short term
memory comprising of recently observed states is slid
over each long-term memory to extract relevant informa-
tion corresponding to the sequence of states.

• Higher-level : The information from the long-term mem-
ory modules (extracted by the lower-level attention) are
selectively aggregated to decide what action to take, based
on the current state(inspired from [16]).

The relevant equations for the construction of the architecture
(Refer Figure 4) with (current observation) Input frame : xt
Frame Encoding :

et = CNN(xt)

Et : [et−1, et−2, ..., et−K ]

Long-term Memory Module i :

[sti, hti, cti] = LSTM(et, h(t−1)i, c(t−1)i)

Fig. 4: Diagrammatic description of the architecture of Modularized
Recurrent Memory-A3C (MRM-A3C) comprising of a single short
term memory and three long term memory modules with two layers
of attention mechanism to enable selective aggregation of information

Short-term Memory Storage :

Mkey
t =W keyEt

Mvalue
t =W valueEt

Short-term Memory Output for ith Long-term Memory Mod-
ule at time step t using Lower-level Attention mechanism:

pti = softmax(sTtiM
key
t )

oti =Mval
t pti

High Attention weights for aggregation of outputs :

ro = V Tattno tanh(Uattnoet +WattnoOo)

αo = softmax(ro)

rs = V Tattnh tanh(Uattnhet +WattnhSo)

αs = softmax(rs)

Aggregation of outputs of Sort-term Memory and Long-term
Memory at time step t:

ot = OTo αo

st = STo αs

VI. OVERVIEW OF THE ALGORITHM MRM-A3C

For the current task, the features from the last k input observa-
tions are extracted using a Convolutional Neural Network and
stored in the short term memory as a key-value representation.
The lower layer attention uses the keys and the corresponding
long term memory to selectively aggregate values from the
short-term memory corresponding to the information stored in
the respective long term memory for the recent observations.
This information along with the context vector corresponding
to each long term memory is used to selectively aggregate
the vectors to give an accumulated short-term memory vector
and a context vector which is used to compute the state-action
values and take actions in the environment. Upon switching to
a new task, the short term memory is cleared and re-initialized
with the observations from the new-task and the process is
repeated.
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VII. PROJECT REPORT

In this project, we aimed to create and implement a working
model of a RL agent which can learn to perform multiple
tasks with the help of augmented short term and long term
memory. Our proposed framework will potentially work for
any RL task at hand, but for the purpose of demonstrating
our idea, we trained our agent on games from the ALE domain.

The agent is evaluated based on its performance in the
games learnt as compared to the baselines upon which it is
built : raw rewards per game(or qam scores as in [20]) and
number of games learnt by the agent while multi-tasking.

For all models, we implemented our ideas over an A3C[12]
and not a DQN [13] as in [14] because the final goal was
to use the model for multi-tasking over a large number of
games and we wished to avoid maintaining separate replay
buffers for each game. We initially proposed three models :
• Model 1 : Agent with memory learning a single task
• Model 2 : Multi-tasking agent with dedicated memories

per task
• Model 3 : Multi-tasking agent with memories shared

across tasks
We implemented Model 1 for the first and part of the second
phase, after which we directly implemented Model 3. All the
models were implemented in Tensorflow1.

A. First Phase

In the first phase of the project we implemented the FRM-A3C
architecture (described in Section V) in Tensorflow. We took
a little time to understand the original codes of [14] which
was implemented in Lua Torch2. We started training on three
different Atari games : Pong, Frostbite and Breakout. Our main
aim at this time before moving on to multi-tasking was to
test our hypothesis that addition of memory will result in a
significant improvement in the performance level. But by the
end of the first phase, the FRM-A3C agent barely showed any
learning and was showing an extremely worse performance
when compared to a normal A3C agent. With that, for the
second phase we moved on to simpler architectures with
memory : M-A3C and RM-A3C.

B. Second Phase

In the second phase of the project we first implemented
2 simpler memory-incorporated architectures : M-A3C
and RM-A3C(described in Section V). We tested these on
individual Atari games : Pong and Frostbite. These models
gave promising results and performed much better than
standard memory-less A3C agents; they gave better regret
optimality and earlier convergence.

On this note, we implemented our multi-tasking model
MRM-A3C and started experiments on it.

1building on top of https://github.com/miyosuda/async deep reinforce
2https://github.com/junhyukoh/icml2016-minecraft

C. Third Phase

In the third phase of the project, we evaluated MRM-A3C,
RM-A3C and A3C-LSTM on two sets of Atari games from
[20] :
• MT1 : Space Invaders, Seaquest, Crazy Climber, Demon

Attack, Name This Game and Star Gunner
• MT2 : Asterix, Assault and Alien

All three models were extended to multitasking setup and
Adaptive Active Sampling technique [20] was used for
deciding the next task during the training phase.

Our initial experiments resulted in catastrophic forgetting
by the agent in all the games. We then tuned the hyperpa-
rameters and started another set of experiments; these are
running now, and we observed that the model with memory
outperforms/performs on par with the baseline memory-less
A3C model. This time, there was no catastrophic forgetting
observed. At the time of submission of this report, the models
have learnt for almost 65M steps across all tasks(games); the
A5C agent used in [20] takes around 100M − 300M (varies
across different games) to finally converge, so we’re hoping
that by that time or even lesser, our model will converge to a
better performance.

VIII. RELATED WORK

Researchers have been working on Multi-task learning and
the use of memory for enhancing performance of RL agents
and neural network models for many years. The paper [14]
introduces an architecture (adapted from [23])that performs
well in partially observable environments with delayed rewards
using high dimensional input observations. The final DQN-
based architecture has a separate short-term and long-term
memory inter-connected by feedback loops. The architecture
generalizes well over temporally extended frames and is able
to retrieve memory blocks through time while taking appropri-
ate actions for the current time step. [15] introduces an archi-
tecture similar to [14], but uses an adaptive and sparse write
operation to memory (reducing frequent overwriting) selective
to the agent’s current location, storing information over long
time periods in 2D and 3D environments. In [8], a short term
memory for recent sensory inputs coupled with a long term
memory is incorporated into a recurrent framework to enable
continuous control in partially observable environments, by
an algorithm derived from DPG[22] and SVG[7]. For better
autonomous exploration and obstacle avoidance, memory has
been incorporated into the agent : Memory-based Multilayer
Q-Network [3]; learning from scratch using a model-free off-
policy method and maintains a linear sort-term as well as a
long-term memory. The paper [5] suggests that memory is
an integral part of a learning system, enabling data-efficient
learning in sparse conditions and long term dependencies
between actions and rewards; and stresses on the importance
of an episodic memory(relating to events) in an RL agent.

A model called Pathnet [4] uses a single large neural
network capable of multi-tasking, continual learning and trans-
fers by evolving pathways (evaluated using fitness function)
corresponding to each task that could have shared paths from

https://github.com/miyosuda/async_deep_reinforce
https://github.com/junhyukoh/icml2016-minecraft


TOPICS IN REINFORCEMENT LEARNING : PROJECT REPORT 5

other tasks. The learning of tasks is done in a sequential
fashion whereas pathway for a single task can be learned
sequentially or in parallel using an A3C [12]. Recently [21]
introduces algorithms where a single A3C[12] agent is trained
online on mutliple tasks in a sequential, occasionally periodic
fashion by sampling the difficult tasks relatively more fre-
quently using 3 different techniques. AMN [24] uses Policy
distillation technique[18] to inherit task-specific policies from
expert DQN[13] networks into a single DQN network to
perform multiple tasks and enhance transfer (feature regression
from experts). Distill and transfer learning [24] is a joint multi-
task learning and transfer setup where individual task-specific
workers learn in a constrained fashion by a shared policy-
distilled to be the centroid of task specific policies. Differential
Policy Gradient [2] derived from DDPG[10], is used for joint
multi-task learning in the context of robotic systems having
continuous action space with shared sets of actions across
tasks using an A3C based framework [12]. The Joint Many-
Task model [6] was proposed in the context of NLP; the depth
of the model is increased with task complexity with short cut
connections from higher level to lower level to enable task
hierarchy, giving outputs at different layers of the model.

Inorder to reduce catastrophic forgetting in neural networks
while learning to do multiple tasks, [9] introduces an algorithm
where the weight updates relevant to previous tasks are selec-
tively constrained using elastic weight consolidation to allow
continual learning. Other relevant works include Attend, Adapt
and Transfer[16], Continuous Memory States[25], Progressive
Learning[1], Universal Value Function Approximators[19],
Deep Relationship Networks[11], Sluice Networks[17], etc.

IX. EXPERIMENTAL RESULTS

In this section, we show the observed experimental results
on individual as well as sets of games and compare
the performance of different architectures and suggest
explanations for the observed results.

We used Arcade Learning Environment and Atari games for
the purpose of our experiments to evaluate the performance of
the models mainly because :

• We felt that individual games in Atari could benefit from
short term memory(we confirmed this in our experiments)

• Multi-tasking :
– Baselines are available for multi-tasking in Atari

games.
– Wide range of games available for experimentation
– All games can be accessed and used similarly leading

to uniformity in the implementation.
– Similarity of Atari games : Though each game is

sufficiently unique in terms of appearance and in terms
of how it’s played, the Atari suite of games do share
some underlying physics and abstract representations.
Hence, they provide easier extension to multi-tasking
and transfer learning.

For the evaluation criteria on the performance of the models,
we’ll be using the same metrics as mentioned in [20] and given

below :

pam =
1

k

k∑
i=1

ai
tai

qam =
1

k

k∑
i=1

min

(
ai
tai

, 1

)

qgm = k

√√√√ k∏
i=1

min

(
ai
tai

, 1

)

qhm =
k∑k

i=1 max
(
tai
ai
, 1
)

A. Single task Experiments

We did a comparison of the performance of memory-
augmented versus memory-less algorithms on individual
games Pong and Frostbite.

Fig. 5: Pong and Frostbite

Fig. 6: Performance of 4 algorithms on Pong
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Fig. 7: Performance of 4 algorithms on Frostbite

TABLE I: Table for Comparison of Performance on Single Task

Metric Game A3C M-A3C RM-A3C

pam
Pong 1 1 1

Frostbite 0.675 - 0.875

qam
Pong 1 1 1

Frostbite 0.675 - 0.875

qgm
Pong 1 1 1

Frostbite 0.675 - 0.875

qhm
Pong 1 1 1

Frostbite 1 - 1

Experiments on Pong and Frostbite(Figure 5) showed that
memory was indeed useful to improve performance(Figures
6 and 7).
Pong is a sports game that simulates table tennis. The player
controls a paddle by moving it vertically across the left or
right side of the screen. It can compete against another player
controlling a second paddle on the opposite side. Players use
the paddles to hit a ball back and forth. The goal is for each
player to reach eleven points before the opponent; points are
earned when one fails to return the ball to the other. In this
game, knowing how the opponent has hit the ball and in
what direction the ball is coming from will help to improve
performance; this is where memory comes of use.
In Frostbite, the bottom two-thirds of the screen is covered
by water with four rows of ice blocks moving left or
right(alternate rows) constantly. The player moves by
jumping from one row to another while trying to avoid
various kinds of foes including crabs and birds. Each time it
jumps on a piece of ice, a part of its igloo gets built; the goal
of each level is to build the igloo.This game is helped by the
presence of memory, since when the player has to jump from
one row to the next, it has to know in which direction the
next row’s ice blocks are moving in and on which one(the
one to the left or the right) it has to jump.

As can be see in Figure 6 addition of just a short-term
memory itself gives better performance than A3C-LSTM and
A3C-FF(which hasn’t learnt anything). Further addition of
long-term memory gives an even better performance.
In Frostbite as well(Figure 7), addition of short and long term
memory helps to significantly increase performance.

B. Multi-tasking Experiments

We ran two multitasking experiments on MT1 and MT2 set of
games using MRM-A3C and a slight variation of it, RM-A3C
and normal A3C-LSTM. All three of these architectures were
exposed to a game sequence picked using the A5C algorithm
[20].

Fig. 8: Catastrophic Forgetting in Name This Game and Seaquest

Our initial set of hyperparameters led to catastrophic forgetting
on all the games, most prominently noticed on Name This
Game and Seaquest(refer Figure 8).
However, after tuning hyperparameters, the performance im-
proved and MRM-A3C and RM-A3C started showing signifi-
cantly better performance in some of the games(refer Figures
9 and 14)

1) Experiment 1: Our first experiment was conducted on an
architecture similar to MRM-A3C but with one small variation
: instead of obtaining higher-level attention weights based on
the current state, we aggregated the outputs of the long term
memory modules as well as the retrieved memories. Figure 9
shows our results on the same.

Fig. 9: Performance of the models on MT1 set of Games

Space Invaders is a shooter game where the player shoots
aliens which move left/right/down. Memory helps the agent
to figure out whether to shoot or move away according to the
recent movement of the aliens. In Seaquest, the agent has to
shoot the sharks as well as keep track of the oxygen decreas-
ing(and how fast this happens); memory aids the agent to do
this. In Crazy Climber, the agent has to climb four skyscrapers
while avoiding sudden obstacles; while memory definitely
helps this, A5C starts to perform well after some time because
some of the obstacles arrive/disappear instantaneously and this
can be captured by the 4 frames considered by the A5C. In
Demon Attack, the agent has to shoot flying demons which can
fly either to the left or to the right, but can also instantaneously
change direction while flying; because of this, both A5C and
memory-augmented A5C’s both have to rely on past say 2-
3 frames only and so they both perform similarly. In Name
This Game, the agent has to protect a treasure from a giant
octopus at the top, while being distracted by a shark; agent
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can refresh oxygen by touching a long pole extended from
a boat at the top from time to time. This game very clearly
benefits from memory since the agent has to keep track of how
the shark moves, which tentacle of the octopus is extending
and in which direction and where the oxygen pole is; this is
clearly seen in the performance difference in the plot(Figure
9 bottom left). In Star Gunner, similar to Demon Attack, the
agent has to shoot flying enemies who seem to change their
direction rapidly. So, presence or absence of memory leads to
around the same performance.
All the above trends(memory being helpful or neutral) can be
seen in Figure 9 very clearly.

TABLE II: Table for Comparison of Performance on MT1 set of
Games

Metric A3C RM-A3C MRM-A3C
pam 0.367 0.479 0.507
qam 0.367 0.479 0.507
qgm 0.183 0.229 0.243

The above table shows our metrics used to compare the
performance of the three architectures. Since the code takes
almost triple the time it has currently ran for to converge/cross
the baseline, we have used all baselines scores divided by
three for the above calculation.

We have visualized the firing rate of the output neurons for
each of the memory modules as well as for the aggregated
representation from the attention module for the MT1 set of
Games.

On comparing the firing rates of the neurons Figures 10,
11 and 12 (note that neurons have been rearranged in the
decreasing order of firing rate), we see that patterns are not
exactly the same, meaning that the long term memory modules
are in fact learning information non-uniformly. Upon close
observation, we can see that the fraction of neurons firing for
each game is also different for the three context vectors.

Fig. 10: Visualization of firing patterns of output neurons correspond-
ing to the first long-term memory module

Fig. 11: Visualization of firing patterns of output neurons correspond-
ing to the second long-term memory module

Fig. 12: Visualization of firing patterns of output neurons correspond-
ing to the third long-term memory module

Fig. 13: Visualization of firing patterns of neurons at the output of
the higher level attention mechanism which is an aggregation of the
outputs from the long term memory modules

For the final context vector(13) we see that maximum
information has been extracted out and almost all neurons
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are subject to learning relevant information. We also see that
Figure 13 represents that the final context vector is a direct
aggregation of the three long term context vectors. Here, a
larger fraction of neurons are firing with higher firing rates in
comparison to the three individual base context vectors. This
could be one of the reasons for better performance of MRM-
A5C variant over RM-A3C and A3C.

2) Experiment 2: Our second experiment was conducted on
the proposed MRM-A3C architecture : we apply higher-level
attention weights on the long term memory modules as well
as the retrieved memories based on the current state. Figure
14 shows our results on the same for MT1. Results for MT2
can be found in the appendix.

Fig. 14: Performance of the models on MT1 set of Games

Again here, the memory-based agents seem to be performing
better than memory-less agents in most cases. The trend
observed in the games seems to be the same as in Experiment
1(variant of MRM-A3C). The experiments have run only for
27M steps all games put together; this could account for the
slightly lesser performance of the agent in Name This Game
and Crazy Climber; however the agent has to train for atleast
100M steps before a clear conclusion can be made owing
to the much deeper structure of the network as compared to
RM-A3C.

Again, we have visualized the firing rate of the output
neurons for each of the memory modules as well as for the
aggregated representation from the attention module for the
MT1 set of Games.

On comparing the firing rates of the neurons in Figures 15,
16 and 17 (note that neurons have been rearranged in the
decreasing order of firing rate), we again see that patterns
are not exactly the same, showing that the long term memory

modules are learning information non-uniformly and that the
fraction of neurons firing for each game is different for the
three context vectors.

Fig. 15: Visualization of firing patterns of output neurons correspond-
ing to the first long-term memory module

Fig. 16: Visualization of firing patterns of output neurons correspond-
ing to the second long-term memory module

Fig. 17: Visualization of firing patterns of output neurons correspond-
ing to the third long-term memory module
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Fig. 18: Visualization of firing patterns of neurons at the output of
the higher level attention mechanism which is a selective aggregation
of the outputs from the long term memory modules depending on the
current encoded input observation

For the final context vector(18) we see that maximum
information has been extracted out and almost all neurons
are subject to learning relevant information. We see on
comparison that these figures are extremely different from
Figures 10,11,12 and 13, indicating the difference in the
architectures. Again here, a larger fraction of neurons are
firing with higher firing rates in comparison to the three
individual base context vectors. Figure 18 shows that a large
fraction of the neurons learn all/most the games confirming
our hypothesis that the different long term memory modules
learn a shared common representation of the various tasks.

We have also visualized the attention weights learnt
for MT1(refer Figure 19). Most of the games seem to
have well separated attention weights as intended. However,
some of them have almost overlapping attention weights
[0.33, 0.33, 0.33]. This is probably a consequence of less
learning; it also corresponds to poor performance as in Star
Gunner(both context vector and retrieved memory weights are
not well separated).

Fig. 19: Visualization of Higher Level Attention Weights for MT1 set
of games : Space Invaders, Seaquest, Crazy Climber, Demon Attack,
Name This Game and Star Gunner in order

It could also be because there aren’t external conditions for
constraining weights to be sparse so that the modules learn
and store distinct information.

X. CONCLUSION AND FUTURE WORK

We started this project trying to prove that memory does help
an agent to perform better, whether it’s performing a single
task or multiple tasks. On that note, we implemented four
different agents augmented with memory and compared their
performances with memory-less agents. We have achieved
promising results towards the same, as seen in the results
for Pong and Frostbite(single tasks) and MT1 (multiple tasks).

However, there are a lot more experiments which could be
conducted and intuitions gained. We could run experiments
on more combinations of games, and observe the attention
weights and also evaluate the agent on transfer tasks using
the learned skills and check for negative transfers. Making the
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domain more challenging can help introduce scenarios where
short term memory becomes a requirement. For example one
could tweak input frames as used in [16], where parts of the
frames are hidden such that there is a need for dependency
on nearby frames while taking the decision for the current
observation, increasing the need for a short term memory.
The model could be evaluated in a multi-tasking setup in
such scenarios.

One could also try using pre-trained short term memory
representations that capture the essence of all the different
tasks and learn a better encoding for the observations. We
could also try updating the Wvalue as

∑K
i=1 SiS

T
i for storing

patterns from different games and then retrieve information
and an encoding using the current observation and with the
key calculated as before and Wkey undergoing regular updates.
A better initialization method for the LSTM weights could
also help in the storage of more distinct information in the
three context vectors. One way is to initialize the LSTM
parameters to be far apart. Another way is to start off with
pre-trained weights from individual games for the LSTM
networks. We could also constrain the attention weights to be
sparse, thus forcing the long term memory modules to learn
distinct representations. One limitation of our current model is
that it doen’t have any explicit constraints for ensuring that the
information stored in the 3 context vectors are distinct from
each other.
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APPENDIX

A. M-A3C Equations

The relevant equations involved in Memory-A3C network
has been portrayed below. The storage of information and it’s
retrieval from the short term memory has been depicted.

Input frame : xt

et = CNN(xt)

Et : [et−1, et−2, ..., et−K ]

st =W cet

Memory Storage :

Mkey
t =W keyEt

Mvalue
t =W valueEt

Memory Output :

pt = softmax(sTt M
key
t )

ot =Mval
t pt

B. RM-A3C Equations

The relevant equations involved in Recurrent Memory-A3C
network has been portrayed below. The storage of information
and it’s retrieval from the short term memory as well as the
long term memory has been depicted.

Input frame : xt

et = CNN(xt)

Et : [et−1, et−2, ..., et−K ]

Long-term Memory :

[st, ht, ct] = LSTM(et, ht−1, ct−1)

Short-term Memory Storage :

Mkey
t =W keyEt

Mvalue
t =W valueEt

Short-term Memory Output :

pt = softmax(sTt M
key
t )

ot =Mval
t pt

C. FRM-A3C Equations

The relevant equations involved in Feedback Recurrent
Memory-A3C network has been portrayed below. The storage
of information and it’s retrieval from the short term memory
as well as the long term memory has been depicted.

Input frame : xt

et = CNN(xt)

Et : [et−1, et−2, ..., et−K ]

Long-term Memory :

[st, ht, ct] = LSTM([et, ot−1], ht−1, ct−1)

Short-term Memory Storage :

Mkey
t =W keyEt

Mvalue
t =W valueEt

Short-term Memory Output :

pt = softmax(sTt M
key
t )

ot =Mval
t pt

D. A5C : Adaptive Active Sampling

Algorithm 1 Multitasking using Adaptive Active Sampling

1: for i in range(k) : do
2: pi =

1
k

3: for train steps in range(t) : do
4: if t thenrain steps ≥ l :
5: for i in range(k) : do
6: ai ← si.average()
7: mi = ← tai−ai

tai×τ
8: pi ← emi∑k

q=1 e
m
q

9: θ ← θ + αδe
10: S ← S′

if S’ is terminal
11: j ≈ p
12: score j ⇐ Trainone episode(T j)
13: s.append(score j
14: if thens j.length() > n
15: s j.remove oldest()

E. Results for MT2
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Fig. 20: Performance of the models on MT2 set of Games

For this set of games, we observed that memory-less agents
performed better or on par with memory-augmented agents.
Though each game could potentially individually benefit from
having memory, learning together seems to have reduced the
advantage of having memory. Now this issue could be because
of slight limitations in the models used; running MT2 after
incorporating some of the changes we thought of and have
mentioned in Future Works could help in better learning.
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