Overview 0000000	Models		

Modelling Ecological Populations

Game Theory Project

Ganga & Deddy EE15B025 & EE15B125

Dynamic Games : Theory and Applications IIT Madras

April 27, 2019

Overview 0000000	Models 000000000000000000000000000000000000					

Schedule

1 Overview

Hawk-Dove Game

2 Models

- Non-Cooperative games
- NN Model Code of Conduct
- UCB Model

3 Future Work

4 Previous Works

5 References

Overview	Models		
0000000			

Overview

- Provides a formalism for behavior
- Obtained from behavioral psychology
- Helpful for modelling ecological populations

Figure: Reinforcement Learning

Methods in Reinforcement Learning

Policy Gradient

- Players have policies (actions)
- Optimize in the policy space
- Gradient Ascent
- Episodic reward
- $\pi(a_i, \theta)$ = Policy parameterized by θ .

 $\boldsymbol{\theta}$ represents the parameters of our neural network.

$$\Delta \theta = \alpha_t r_r \frac{d}{d\theta} \pi(a_t, \theta_t)$$

- Multi-Armed Bandits
 - Players pick from k arms
 - Find the best arm to pull

Overview ●OOOOOO	Models 000000000000000000000000000000000000		
Hawk-D	ove Game		

- What is it?
 - Models interaction within same species
 - Sharing of resources
- Pay-off matrix :

	Hawk	Dove
Hawk	$\frac{B-C}{2}, \frac{B-C}{2}$	В, О
Dove	0, B	$\frac{B}{2}, \frac{B}{2}$

B < C ; (B=6, C=10 in our expts)

	Hawk	Dove
Hawk	-2, -2	6, 0
Dove	0, 6	3, 3

The pay-off of player i is denoted by $u_i(s_i, s_j)$

Nash Equilibria : Hawk-Dove Game

- 3 nash equilibria
- 2 pure + 1 mixed

Figure: Nash Equilibria in a Hawk-Dove Game[2]

Overview 00●0000	Models 000000000000000000000000000000000000			
Modifie	d Hawk-Dove Ga	ame		

A population of N players

- Each player can be a hawk or a dove
- Pay-off decided based on interaction with population
- Pay-off of player i in the population is denoted by $u_i(s_i, s_{-i})$

Figure: N-player hawk-dove game

Overview 0000000	Models 0000000			
_				

From RL Perspective

Figure: N-player hawk-dove game (Ref : MARL)

 Overview
 Models
 Future Work
 Previous Works
 References
 References

 Measuring individual pay-off

Playing against the field

$$u_i(\mathbf{s}_i,\mathbf{s}_{-i}) = \frac{1}{N} \sum_{\forall j \neq i} u_i(\mathbf{s}_i,\mathbf{s}_j)$$

Playing against a group M_j

$$u_i(\mathbf{s}_i,\mathbf{s}_{-i}) = \frac{1}{|M_j|} \sum_{j \in M_j} u_i(\mathbf{s}_i,\mathbf{s}_j)$$

Pair-wise contest (Player j chosen randomly by nature)

$$u_i(s_i, s_{-i}) = u_i(s_i, s_j)$$

A better understanding of its significance during convergence

Figure: Convergence comparison of the three methods of calculating individual payoffs : Playing against the field, Playing against a group and Pair-wise contest respectively

- Static Games: A static game is one in which all players make decisions (or select a strategy) simultaneously, without knowledge of the strategies that are being chosen by other players. Even though the decisions may be made at different points in time, the game is simultaneous because each player has no information about the decisions of others; thus, it is as if the decisions are made simultaneously.
- Stage Games: A Stage Game is a game that arises in certain stage of a static game. In other words, the rules of the games depend on the specific stage. The prisoner's dilemma is a classic example of stage game

Models		

Models

 Overview
 Models
 Future Work
 Previous Works
 References
 References

 Non-Cooperative games
 Non-Model Multi-brain

- Selfish agents
- Policy Gradient update
- Players have stochastic strategies, but play pure strategies

Figure: RL mechanism for pairwise contests

- 1 Players are matched randomly
- Strategies drawn from Bernoulli distribution

Figure: State of population over time: pairwise contests

 Overview
 Models
 Future Work
 Previous Works
 References
 References

 Non-Cooperative games
 Playing against Field

- 1 Strategies drawn from Bernoulli distribution
- 2 Payoff obtained against population profile
- Population converges faster (sort of)

Figure: State of population over time: against the field

Overview 0000000	Models ○○○●○○○○○○○○○○○○○○○○			
	lel - Code of Cor	nduct		

- Players still selfish...
- But agree to a "code of conduct" or Rules of Engagement (RoE)
- Code of conduct updated by each player in turns

Figure: Depiction of a game with code of conduct

Overview Models Future Work Previous Works References References

- Parameterized function
- Can be tweaked by players

Figure: Example neural network

Players are matched one on one randomly by Nature
 Players update RoE and display state through experience

Figure: State of population (RoE) over time: pairwise contests. Some amount of inherent forced cooperation observed resulting in a population pay-off higher than MSNE

 Overview
 Models
 Future Work
 Previous Works
 References
 References

 NN Model - Code of Conduct
 Playing against the Field

- Again, final population profile not MSNE.
- Lower variance during steady state.

Figure: State of population (RoE) over time: against field. Some amount of inherent forced cooperation observed resulting in a population pay-off higher than MSNE

Ganga & Deddy EE15B025 & EE15B125

• A person must choose between multiple actions (originally comes from the idea of slot machines, the "one-armed bandits"), each with an unknown reward.

Figure: Multi-Armed Bandit Problem

- Goal : determine the best or most profitable outcome through a series of choices.
- At the beginning of the experiment, when odds and payouts are unknown, the gambler must determine which machine to pull, in which order and how many times.

Overview 0000000	Models ○○○○○○○●○○○○○○○○○○○○		
UCB Model			
UCB M	odel		

Upper Confidence Bound Algorithm : (For a single player)

> Initialization: Play each arm once, For t = K + 1, ..., n, repeat (1) Play arm $I_t = argmax_{k=1,...,K}UCB_t(k)$, where $UCB_t(k) = \hat{\mu}_k(t-1) + \sqrt{\frac{8\log t}{T_k(t-1)}}$ (2) Observe sample X_t from the distribution P_{I_t} corresponding to the arm I_t .

Overview 0000000	Models ○○○○○○○○●○○○○○○○○○○		
UCB Model			
Playing	g against Field		

Figure: Evolution of Population over time and the average pay-off of the population over time when the population is initialized randomly with probability 0.5 (Equivalent to individual pay-off over time after convergence in this case). **Each player interacts with everyone else in the population.**

Overview 0000000	Models		
UCB Model			
_1 .			

Playing against Field

Figure: Evolution of Population over time and the average pay-off of the population over time when the population is initialized randomly with probability 0.5 (Equivalent to individual pay-off over time after convergence in this case). **Each player interacts with everyone else in the population.**

Overview 0000000	Models ○○○○○○○○○○●○○○○○○○○		
UCB Model			

Playing Against a Group

Figure: Evolution of Population over time and the average pay-off of the population over time when the population is initialized randomly with probability 0.5 (Equivalent to individual pay-off over time after convergence in this case). Each player interacts with m<10% of the population.

	Models		
0000000	000000000000000000000000000000000000000		
UCB Model			

Playing Against a Group

Figure: Evolution of Population over time and the average pay-off of the population over time when the population is initialized randomly with probability 0.5 (Equivalent to individual pay-off over time after convergence in this case). Each player interacts with m<10% of the population.

Overview			
UCB Model			
_ • •			

Pair-wise contest

Figure: Evolution of Population over time and the average pay-off of the population over time when the population is initialized randomly with probability 0.5 (Equivalent to individual pay-off over time after convergence in this case). **Every player interacts with another random player - one vs one.**

Overview 0000000	Models ○○○○○○○○○○○○○○○○○○○○○		
UCB Model			

Pair-wise contest

Figure: Evolution of Population over time and the average pay-off of the population over time when the population is initialized randomly with probability 0.5 (Equivalent to individual pay-off over time after convergence in this case). **Every player interacts with another random player - one vs one.**

	Models		
	000000000000000000000000000000000000000		
UCB Model			

A better understanding of its significance during convergence

Figure: Convergence comparison of the three methods of calculating individual payoffs : Playing against the field, Playing against a group and Pair-wise contest respectively

Overview 0000000	Models 000000000000000000000000000000000000		
UCB Model			

Summarizing UCB experiments

- Observations :
 - In all 3 cases, the population converges to a cycle (either all Hawk or all Dove)
 - In all 3 cases, the average population pay-off converges to a cycle (either -2 or +3)
 - The convergence rate of the 3 methods similar to Full Batch GD, Mini Batch GD and SGD
- Inference :
 - Playing against Field : When majority of the current population is Dove(>40%), better to be a Hawk.
 - Playing Against a Group : When majority of the sampled population is Dove(>40%), better to be a Hawk
 - Pair-wise contest : When he's a Dove, I'm better off as Hawk
- Reason :
 - Each player in each iteration chooses best response

Overview 0000000	Models ○○○○○○○○○○○○○○○○○○○○		
UCB Model			
Group	Play		

Figure: Evolution of Population over time and the average pay-off of the population over time when the population is initialized randomly with probability 0.5. **A** group of m=10% of the population interacts in each interaction.

Overview 0000000	Models ○○○○○○○○○○○○○○○○○○○		
UCB Model			
Group	Play		

Figure: Evolution of Population over time and the average pay-off of the population over time when the population is initialized randomly with probability 0.5. **A** group of m=10% of the population interacts in each interaction.

Overview 0000000	Models ○○○○○○○○○○○○○○○○○○○		
UCB Model			
Group	Play		

Observation :

Fairly robust to different population initialization techniques :

Initialization	Avg No. of Dove	Avg population pay-off
All Hawk	48	1.76
All Dove	47	1.78
Random (p=0.5)	47	1.78

Average population pay-off better than MSNE pay-off

Reason :

The change in population distribution is minimal

	Future Work		

Future Work

Overview 0000000	Models 000000000000000000000000000000000000	Future Work		
Future	Work			

- Asymmetric Games (eg) Trust-Cooperate
- Strange attractors to analyse chaotic populations
- Quantifying rewards of cooperation
- Informed Reinforcement learners : use communication through revelation schemes

Overview 0000000	Models 000000000000000000000000000000000000	Previous Works	

Previous Works

Axelrod - Evolution of Cooperation

- Also used to analyze behavior of populations
- made use of evolutionary programming

Figure: 5 stages of the evolution of cooperation

Evolutionary Game Theory and Multi-Agent Reinforcement Learning

- Authors : Karl Tuyls and Ann Nowe
- Survey the basics of RL and (Evolutionary) Game Theory
- Multi-Agent Systems
- Mathematical connection between MARL and Evolutionary Game Theory
- Ref : Paper pdf

Overview 0000000	Models 000000000000000000000000000000000000		References	

References

Overview 0000000	Models 000000000000000000000000000000000000		References	References
Refere	nces			

Jessica L. Barker. "Robert Axelrod's (1984) The Evolution of Cooperation". In: Encyclopedia of Evolutionary Psychological Science. Ed. by Todd K. Shackelford and Viviana A. Weekes-Shackelford. Cham: Springer International Publishing, 2017, pp. 1–8. ISBN: 978-3-319-16999-6. DOI: 10.1007/978-3-319-16999-6_1220-1. URL: https://doi.org/10.1007/978-3-319-16999-6_1220-1.

Essam EL-Seidy. "On the Behavior of Strategies in Hawk-Dove Game". In: (2016), pp. 1–8. DOI: 10.1007/978-3-319-16999-6_1220-1. URL: https://doi.org/10.5923/j.jgt.20160501.02..

Richard S. Sutton and Andrew G. Barto. Reinforcement learning

 an introduction. Adaptive computation and machine
 learning. MIT Press, 1998. ISBN: 0262193981. URL:
 http://www.worldcat.org/oclc/37293240.

			References
0000000	000000000000000000000000000000000000000		

THANK YOU :)

